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The Initial-Value Problem for the Equation 
(tut), IXelt,, 

By Alan Solomon and Faiza Solomon 

Abstract. It is shown that the initial-value problem of the equation (tug) ) = u, with the 
value of u prescribed for t = 0 has a unique solution satisfying a maximum principle. In 
addition, several numerical schemes for its solution are proposed. 

Introduction. Consider the initial-value problem 
Problem A. Find a function u(x, t) satisfying the conditions 

(l) U1 = (tut), (tClt t + ut), t > 0, - co X K< c, 

(2) u(x, O) = f(x), -o < x < , 

for a twice continuously differentiable function f(x). 
This problem has arisen from the consideration of heat conduction problems with 

delay, related to the equivalent equation 

(3) u1(x, t) = - ; u,,(x, T) dT. 

Equation (1) governs the motion of a homogeneous rope with one free end when 
the variables t, x are interchanged (see [1, p. 390]). It is clearly hyperbolic for t > 0 
anld reduces to the heat equation 

(4) ut = u, (=' 1(x)), 

for t = 0, whence Problem A is a Goursat type problem in which u, is to be found 
initially from (4). 

In this paper we study both the theoretical and numerical aspects of solving 
Problem A. In Section 1 we briefly sketch the proofs of existence, of uniqueness and 
of a strong maximum principle, based on well-known concepts; in, Section 2 we 
examine an explicit difference scheme with variable time steps for the numerical 
solution, while in Section 3 other numerical schemes are described. 

1. Solution of the Problem. The characteristics of Eq. (1) are parabolas 

(5) t- (X-C)2, c = const, 

two of which pass through every point of the upper half-plane. In order to prove the 

Received October 15, 1969, revised November 24, 1969. 
AMS Subject Classifications. Primary 6561, 6567, 6568; Secondary 3501, 3507, 3552, 3570, 3578. 
Key Words and Phrases. Initial-value problem, maximum principle, difference equation, variable 

mesh, stability condition. 

Copyright i 1971, American Mathematical Society 

611 



612 ALAN SOLOMON AND FAIZA SOLOMON 

unique existence of a solution to Problem A and to derive a maximum principle we 
first obtain the following: 

THEOREM 1. Let P = (xo, to) be any point of the upper half-plane. Let C_, C+ be the 
portions of the characteristics 

t = t1(x) = 4 [X - (xo - 2t,2)]2, 
(6)4 

t = t2(x) = 4[X - (xo + 2to/2)]2, 

joining P to the points 

A = (xo - 2402, 0), B = (xo + 2t0'2, 0). 

Let L be the interval 

[XO - 2to1, XO + 2/ 2] 

of the initial line t = 0. 
If u(x, t) is a solution to Eq. (1), then 

1 I' 1 CXo+2t,/'3 (7) u(xo, t0) = u(s, t1(s)) ds + - u(s, t2(s)) ds. 
4 o-2tol/2 44/ J0 

Theorem 1 is proved by integrating Eq. (1) over the region D bounded by C, 
C+, L and by using Green's theorem. 

Let M = max J(x), m = min f(x) over L. Then we assert the 
COROLLARY 1 (MAXIMUM PRINCIPLE). 

(8) m < u(xO, to) :!! M. 

It suffices for us to prove the right-hand inequality. 
By Eq. (7) 

(9) min u(x, t) ? u(xo, to) ? max u(x, t) 

with strict inequality holding, unless u is constant on C_, C,. If u is not constant on 
C_, C>, then by inequality (9) there is a point Q = (xl, tj) on these characteristics 
for which u(x,, t,) > u(xo, to). However, inequality (9) can itself be applied to u(x,, t,) 
with respect to the characteristics passing through Q, a process which can then be 
applied to other points on these characteristics. The same argument can be applied 
to the left-hand inequality of (8); thus, inequality (8) is proved. 

COROLLARY 2 (STRONG MAXIMUM PRINCIPLE). If f'(x) is not identically zero on L, 
then 

(10) m < u(xO, t0) < M. 

For, let a point (x*, 0) of the base L exist at which f'(x*) d 0 and 

(11) m < f(x*) < M. 

Then, on the characteristic parabola emanating from (x*, 0) 

t = I(S _ x*)2 X= 
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we have 
d ~ = dx dt _ 

dtu(s,t) | = ds +ut ds |X - /(x*) $ 0, 
whence u is not constant on the characteristic. Let R be the point of intersection of 
this characteristic with C+. Clearly, inequality (8) implies m < u(R) < M, and hence, 
by the inequality (9), u(xo, to) cannot attain either of the values m, M; Corollary 2 is 
thus proved. 

From this result and the linearity of Eq. (1) we have 
COROLLARY 3. If a solution to Problem A exists, then it is unique. 
Representation (7) can be used in order to prove the existence of a solution to 

Problem A, based on Picard iteration (see, i.e., [2, pp. 466-471]). Due to the similarity 
of this proof to that for the ordinary wave equation, we omit it, and summarize our 
results as: 

THEOREM 2. There exists a unique solution to Problem A obeying a strong maximum 
principle. 

2. An Explicit Numerical Scheme with Variable Time Steps for Problem A. 
Numerical schemes for the solution of Problem A can be formulated in many different 
ways. In this section we examine a scheme with fixed space mesh length and variable 
time mesh lengths, which was most effective among all schemes tested. 

Let us choose some Ax > 0 and a sequence of numbers At,, A2t, At, * , and 
let us define 

xi = jAx, j = O,A J,. 

n 

tn= SAt, to = Ato= 0, n= 1, 2, 

For any indices j, n, Eq. (3) implies 

(tn + 2At.+1)Ut(Xi, t, + 22At +1) (to - 12AtJ)U(Xi(xs t 2 -At 

(12) tR+(1/2ASn+l 

= I u,,(x, r) dr. 
"tR (1/2) a t, 

Replacing the derivatives ut on the left-hand side of (12) by centered differences, and 
the integral on the right-hand side by a centered difference at (xi, ta), we are led to 
the explicit difference scheme 

(t /At.+1 + 1)( U+l - Un) - (t1/t. - )(Un U- 

(13) 2i(Atn + At,,+1) 

i- 2 U! + U7. 
Ax2 =0, 

where U, represents the approximation to u(x;, t.). The value U! is to be found by 
the heat equation analog 

(13a) UIU, = U+1-2 -+ UI 
Atwi AX2 

with Uo' = f(xi). 
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In the case of equal mesh lengths At,, = At, Eq. (13) reduces to the stanidard 
explicit scheme 

(14) (t, + 2At)( UEr - Ui) - (tn - 2At)( U7 - = X2( U7+1 - 2 Un + Uk,) 

with X = At/Ax. 
By a simple calculation we find that, for Lu (tu), - u_, we have, for any 

smooth function u, LAu = Lu + E with 

E = (Atn+l - Atn)(tnu3t/3 + u2t/2) + n 
iii + tf)(tnU4t/12 + u3t/6) 

+ + 2 (t.u(,+ ( -1)< At +)(/( + 1)! + u,t/2W!) At,?1 + At,, 

- x2U4,/12 - - 2Ax2(/A-1) u2pz/(21#)! - 

where derivatives of u are evaluated at (xi, t,,). 
Although the first term in E vanishes for At,,+, At,, the best numerical results 

have been obtained for At,, = O(tl,2 Ax), a reflection of the fact that the succeeding 
term in E is of order O(At2 + tnAx2). 

- Using a modification of the usual method of von Neumann, we have been led to 
a stability criterion for Eq. (13) of the form 

(I 5 a) XAn>%nl < tn s 

(I15b) At.+1 < tnAtn/tn-1, X n = A tn/ Ax. 

We may justify these conditions by means of the following argument: Let us seek a 
solution to Eq. (13) in the form U,. = gn exp (ijaAx), with g0, gl known values. Intro- 
ducing this expression into Eq. (13) we obtain the difference equation 

(tn+l/'Atn+l- 2)(g9n+1 - g,) (tn/Attn 2)(g, - gn-1) 
(16) (Xn + Xn,?l) 2 

+ 2 -A g, sn (aAx/2) = 0. 

We wish to find conditions under which the terms gn will remain bounded as n tends 
to infinity. If we define the vector 

hn- 1 n , 1, 

then Eq. (16) can be rewritten in the form 

(17) h.n+ Chn, 

where 

C. I + (8 2y)/ 6 - O/ 6 
c,, { 1+. - Y/ 13/8j 

t ,,+1/Atn+1 - 1/2, = t,,/tA - l/2, 

X,y + 
1" 

sin2 (aAx/2). 



INITIAL-VALUE PROBLEM FOR (tUt)t = U-,8$ 615 

It is easily seen that the conditions (1Sa) and (lSb) guarantee that the spectral radius 
p(C,) of C,, is not greater than 1. By Eq. (17) hn= Hi _1 Cjho, whence stability of 
the scheme (13), or equivalently boundedness of the vectors hn uniformly in n, will 
be guaranteed, if 

n 

(18) IJ jjCji : Ml, 
i O 

for some constant M independent of n, where jj is the maximum matrix norm. 
However, since for any Cn, p(C,,) _ jC,, j , we find from (18) that o p(C;) < M 
for which conditions (15a, b) are sufficient. 

The results of numerical experiments justify the use of (15a, b) as stability condi- 
tions, as well as the use of the scheme (13) with time steps varying in a manner 
dictated by this condition. Thus, in particular, the violation of either (1Sa) or (15b) 
has led to instabilities in our numerical experiments. 

In Table I are listed the values of the exact solution 

u(x, t) = Jo(2t 2) Cos x 

to Problem A, with the conditions 

(19) u(O, t) = u(2ir, t) = JO(2t 1/) 

on the interval [0, 2ir] for the times t = 1.99958, 100,028 and points xi = jAx, Ax 
2Xr/l00, j = 0, * * *, 50. Here JJ0 denotes the "zeroth" Bessel function. 

Among possible mesh lengths At, satisfying (1 5a), (1 Sb) we have used the sequence 
defined by 

AnXn-I = tn-1 ?a, a > 0, 

or, equivalently, 

(20) Atn = n(Ax2/2), n = odd, 

= n(Ax2/2)- 2a, n = even, 

for a a small parameter of order O(Ax2). Thus, 

tn= n(n + )Ax2 -(n - 1)a, n = odd, 

- 4n(n + 1)Ax2-na, n = even. 

A second choice of mesh lengths Atn is that of fixed At,, At. In this case the initially 
parabolic behavior of (1) dictates the choice 

(21) At = .1Ax2. 

In Table II we show the relative error 

R computed value - real value 
real value 

for results obtained by (20) and (21) for t = 1.99958, x = 2r/100, a = 10'. Due to 
symmetry, only the values for 0 _ x _ 7r are shown. We see that the scheme (20) yields 
consistently more accurate results although it was obtained in 46 time steps, versus 
1014 time steps in the case of (21). We note too that only the last time step in using 
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TABLE I. Exact Solution 

x u(x, 1.99958) u(x, 100.028) 

0 -1.96430 X 10-1 1.66835 X 10-1 
6.28319 X 10-2 -1.96042 X 10-1 1.66506 X 10-1 
1.25664 X 10-1 -1.94881 X 10-1 1.65519 X 10-1 
1.88496 X 10-1 -1.92950 X 10-1 1.63880 X 10-1 
2.51327 X 10-1 -1.90259 X 10-1 1.62593 X 10-1 
3.14159 X 10-1 -1.86816 X 10-1 1.58669 X 10-1 
3.76991 X 10-1 -1.82636 X 10-1 1.55119 X 10-1 
4.39823 X 10-1 -1.77735 X 10-1 1.50957 X 10-1 
5.02655 X 10-1 -1.73133 X 10-1 1.46498 X 10-1 
5.65487 X 10-1 -1.65851 X 10-1 1.40863 X 10-1 
6.28319 X 10-1 -1.58915 X 10-1 1.34972 X 10-1 
6.91150 X 10-1 -1.51352 X 10-1 1.28548 X 10-1 
7.53982 X 10-1 -1.43191 X 10-1 1.21617 X 10-1 
8.16814 X 10-1 -1.34465 X 10-1 1.14206 X 10-1 
8.79646 X 10-1 -1.25209 X 10-1 1.06345 X 10-1 
9.42478 X 10-1 -1.15459 X 10-1 9.80630 X 10-2 
1.00531 -1.05252 X 10-1 8.93946 X 10-2 
1.06814 -9.46308 X 10-2 8.03733 X 10-2 
1.13097 -8.36357 X 10-2 7.10348 X 10-2 
1.19381 -7.23106 X 10-2 6.14160 X 10-2 
1.25664 -6.07001 X 10-2 5.15548 X 10-2 
1.31947 -4.88501 X 10-2 4.14901 X 10-2 
1.38230 -3.68073 X 10-2 3.12617 X 10-2 
1.44513 -2.46192 X 10-2 2.09099 X 10-2 
1.50796 -1.23339 X 10-2 1.04756 X 1O-2 
1.57080 -5.03517 X 10-13 4.27655 X 10-13 
1.63363 1.23339 X 10-2 -1.04756 X 10-2 
1.69646 2.46192 X 10-2 -2.09099 X 10-2 
1.75929 3.68073 X 10-2 -3.12617 X 10-2 
1.82212 4.88501 X 10-2 -4.14901 X 10-2 
1.88496 6.07001 X 10-2 -5.15548 X 10-2 
1.94779 7.23106 X 10-2 -6.14160 X 10-2 
2.01062 8.36357 X 10-2 -7.10348 X 10-2 
2.07345 9.46308 X 10-2 -8.03733 X 10-2 
2.13628 1.05252 X 10-1 -8.93946 X 10-2 
2.19911 1.15459 X 10-1 -9.80630 X 10-2 
2.26195 1.25209 X 10-1 -1.06345 X 10-1 
2.32478 1.34465 X 10-1 -1.14206 X 10-1 
2.38761 1.43191 X 10-1 -1.21617 X 10-1 
2.45044 1.51352 X 10-1 -1.28548 X 10-1 
2.51327 1.58915 X 10-1 -1.34972 X 10-1 
2.57611 1.65851 X 10-1 -1.40863 X 10-1 
2.63894 1.72133 X 10-1 -1.46198 X 10-1 
2.70177 1.77735 X 10-1 -1.50957 X 10-1 
2.76460 1.82636 X 10-1 -1.55119 X 10-1 
2.82743 1.86816 X 10-1 -1.58669 X 10-1 
2.89027 1.90259 X 10-1 -1.61593 X 10-1 
2.95310 1.92950 X 10-1 -1.63880 X 10-1 
3.01593 1.94881 X 10-1 -1.65519 X 10-1 
3.07876 1.96042 X 10-1 -1.66506 X 10-1 
3.14159 1.96430 X 10-1 -1.66835 X 10-1 
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TABLE II. Relative Errors for t = 1.99958 

Scheme (20) (a = 10-4) Scheme (21) 
x RX 102 RX 102 

0 0 0 
6.28319 X 10-2 -3.74205 X 10-4 1.56451 X 10-3 
1.25664 X 10-1 1.05931 X 10-3 3.02897 X 10-3 
1.88496 X 10-1 2.33711 X 10-3 4.42017 X 10-3 
2.51327 X 10-1 3.48479 X 10-3 5.76665 X 10-3 
3.14159 X 10-1 4.47864 X 10-3 7.09625 X 10-3 
3.76991 X 10-1 5.34131 X 10-3 8.44004 X 10-3 
4.39823 X 10-1 6.04008 X 10-3 9.82903 X 10-3 
5.02655 X 10-1 6.59408 X 10-3 1.12993 X 10-2 
5.65487 X 10-1 6.95875 X 10-3 1.28979 X 10-2 
6.28319 X 10-1 7.14686 X 10-3 1.46707 X 10-2 
6.91150 X 10-1 7.09633 X 10-3 1.66889 X 10-2 
7.53982 X 10-1 6.80748 X 10-3 1.90225 X 10-2 
8.16814 X 10-1 6.18842 X 10-3 2.17873 X 10-2 
8.79646 X 10-1 5.21147 X 10-' 2.51170 X 10-2 
9.42478 X 10-1 3.72714 X 10-3 2.92034 X 10-2 
1.00531 1.63963 X 10-3 3.43399 X 10-2 
1.06814 -1.33291 X 10-3 4.09176 X 10-2 
1.13097 -5.47894 X 10-3 4.96085 X 10-2 
1.19381 -1.14628 X 10-2 6.14974 X 10-2 
1.25664 -2.02631 X 10-2 7.84993 X 10-2 
1.31947 -3.41116 X 10-2 1.04556 X 10-1 
1.38230 -5.78567 X 10-2 1.48721 X 10- 
1.44513 -1.06585 X 10-1 2.38161 X 10-' 
1.50796 -2.54662 X 10-1 5.09119 X 10-1 
1.57080 -7.31755 X 10+9 1.33469 X 1010 
1.63363 3.44220 X 10-1 -5.82442 X 10- 
1.69646 1.96102 X 10-1 -3.11666 X 10-' 
1.75929 1.47313 X 10-1 -2.22408 X 10- 
1.82212 1.23475 X 10-1 -1.78469 X 10-1 
1.88496 1.09513 X 10-1 -1.52719 X 10-1 
1.94779 1.00566 X 10-1 -1.36119 X 10- 
2.01062 9.44130 X 10-2 -1.24714 X 10- 
2.07345 9.00611 X 10-2 -1.16532 X 10- 
2.13628 8.68571 X 10-2 -1.10538 X 10-1 
2.19911 8.44986 X 10-2 -1.06111 X 10-1 
2.26195 8.27134 X 10-2 -1.02805 X 10-1 
2.32478 8.13898 X 10-2 -1.00303 X 10-1 
2.38761 8.03890 X 10-2 -9.84168 X 10-2 
2.45044 7.96650 X 10-2 -9.70460 X 10-2 
2.51327 7.91361 X 10-2 -9.61149 X 10-2 
2.57611 7.87805 X 10-2 -9.55339 X 10-2 
2.63894 7.85471 X 10-2 -9.52043 X 10-2 
2.70177 7.84207 X 10-2 -9.50344 X 10-2 
2.76460 7.83694 X 10-2 -9.49552 X 10-2 
2.82743 7.83575 X 10-2 -9.49212 X 10-2 
2.89027 7.83575 X 10-2 -9.49076 X 10-2 
2.95310 7.83575 X 10-2 -9.49027 X 10-2 
3.01593 7.83575 X 10-2 -9.49008 X 10-2 
3.07876 7.83575 X 10-2 -9.49003 X 10-2 
3.14159 7.83575 X 10-2 -9.49001 X 10-2 
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TABLE III. Relative Errors for t = 100.028 

Scheme (20) (a = 10-4) Scheme (23) 
x R X 102 R X 102 

0 -2.18056 X 10-9 0 
6.28319 X 10-1 5.12180 X 10-4 2.19268 X 10-1 
1.25664 X 10-1 7.49287 X 10-4 4.38328 X 10-1 
1.88496 X 10-1 9.91638 X 10-4 6.58115 X 10-1 
2.51327 X 10-1 1.24254 X 10-s 8.79622 X 10-1 
3.14159 X 10-1 1.50529 X 10-s 1.10394 
3.76991 X 10-1 1.78542 X 10-s 1.33230 
4.39823 X 10-1 2.08626 X 10-s 1.56616 
5.02655 X 10-1 2.41603 X 10-s 1.80726 
5.65487 X 10-1 2.77926 X 10-s 2.05770 
6.28319 X 10-1 3.18920 X 10-3 2.32017 
6.91150 X 10-1 3.65357 X 10-3 2.59806 
7.53982 X 10-1 4.19272 X 10-s 2.89578 
8.16814 X 10-1 4.82270 X 10-s 3.21924 
8.79646 X 10-1 5.57887 X 10-3 3.57646 
9.42478 X 10-1 6.49597 X 10-3 3.97868 
1.00531 7.64118 X 10-3 4.44215 
1.06814 9.09941 X 10-3 4.99122 
1.13097 1.10286 X 10-2 5.66421 
1.19381 1.36939 X 10-2 6.52478 
1.25664 1.75476 X 10-2 7.68850 
1.31947 2.34817 X 10-2 9.38478 
1.38230 3.35593 X 10-2 1.21504 X 10+1 
1.44513 5.39752 X 10-2 1.75954 X 10+1 
1.50796 1.15745 X 10-1 3.37697 X 10+1 
1.57080 3.03904 X 10+9 7.89280 X 1011 
1.63363 -1.32713 X 10-1 -3.04941 X 10+1 
1.69646 -7.09079 X 10-2 -1.43319 X 10+1 
1.75929 -5.04643 X 10-2 -8.90710 
1.82212 -4.03224 X 10-2 -6.16978 
1.88496 -3.43518 X 10-2 -4.50992 
1.94779 -3.04027 X 10-2 -3.39087 
2.01062 -2.76406 X 10-2 -2.58265 
2.07345 -2.55945 X 10-2 -1.97029 
2.13628 -2.40531 X 10-2 -1.48993 
2.19911 -2.28367 X 10-2 -1.10327 
2.26195 -2.18836 X 10-2 -7.85955 X 10-1 
2.32478 -2.11012 X 10-2 -5.21784 X 10-1 
2.38761 -2.04763 X 10-2 -2.99554 X 10-1 
2.45044 -1.99492 X 10-2 -1.11292 X 10-1 
2.51327 -1.95262 X 10-2 4.88156 X 10-2 
2.57611 -1.91629 X 10-2 1.85095 X 10-1 
2.63894 -1.88742 X 10-2 3.00814 X 10-1 
2.70177 -1.86236 X 10-2 3.98471 X 10-1 
2.76460 -1.84307 X 10-2 4.79988 X 10-1 
2.82743 -1.82631 X 10-2 5.46847 X 10-1 
2.89027 -1.81431 X 10-2 6.00184 X 10-1 
2.95310 -1.80412 X 10-2 6.40854 X 10-1 
3.01593 -1.79813 X 10-2 6.69483 X 10-1 
3.07876 -1.79353 X 10-2 6.86496 X 10-1 
3.14159 -1.79290 X 10-2 6.92140 X 10-1 
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(20) was done for very small At48 2 - t45, which violates (15b) and introduces a 
matrix C45 in (17) whose spectral radius is greater than 1. 

In the next section similar results are obtained by comparing (20) with a simple 
implicit scheme. 

3. Other Numerical Schemes. 
A. A DuFort-Frankel Scheme. The presence of the coefficient t in the Eq. (1) 

obviates the necessity of choosing extremely small At in order to meet the stability 
requirement (15a) of the explicit scheme examined above. Nevertheless, due to the 
initially parabolic nature of Eq. (1), we are led to seek an explicit, unconditionally 
stable difference scheme based on the method of DuFort and Frankel (see [3]). 
This is obtained by replacement of both sides of Eq. (1) by centered differences for 
At fixed, and replacement of the value of the solution at the point about which these 
differences are formed by the average of the values at the following and the previous 
time steps, and results in the scheme 

(22) U U+l(X + 1) = Un1(1 - X) + X(Un+ + Un1), 

for X = At/Ax. By a simple calculation we find that this scheme is consistent with 
the equation X2u" + u, - ur = 0, whence consistency of Eq. (22) with Eq. (1) 
would be possible only if t = X2, which is impossible. 

B. An Implicit Scheme. The use of implicit schemes for the solution of hyperbolic 
equations is not as urgent as in the case of parabolic equations because stability 
requirements do not ordinarily demand that At be of order O(Ax2). In addition, 
care must be taken that such schemes are not "overstable" and do not artificially 
damp the solution (see [4]). Nevertheless it is of interest to examine a simple implicit 
scheme obtained by replacement of the term (tu,), by a centered difference and u,. 
by a centered difference at the latest time step; this results in a scheme of the form 

(23) U,r (2A + (ni + A + U72) = U, (2nAt) - (n - 2) AtUn>, 

with X = At/lAx, for which the discretization error is 

E = - -t u44(x, 7-) dir + Ax2(X2 (u3t/6 - utt/,12) - u4x/12) + O(Ax3). 

The leading term in E is of order O(At) and dominates E. On the basis of arguments 
identical to those concerned with the explicit scheme we find that the scheme (23) 
is unconditionally stable for all values of X. Nevertheless due to the presence of the 
leading term of E this scheme is not as accurate as the explicit scheme with variable 
time mesh, and yields results which are not satisfactory. In Table III we see the 
relative errors obtained by using the scheme (23) for fixed At = Ax (in column 1) 
and the scheme (13) with mesh lengths given by (20) for the problem (19), at the time 
t 100. The implicit scheme has now run for 1593 time steps, whereas the explicit 
scheme requires 319 time steps. We note that the phenomena of overstability noted 
by Zajac in [4] for the wave equation has not appeared in this or other experiments 
with implicit schemes for Eq. (1). 

C. A Method of Characteristics. In addition to using difference schemes it is 
possible to solve (1) numerically by using the relation (7). To do this we choose some 
Ax > 0 and define a mesh of points (xi, tJ) of intersection of the characteristics 
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passing through the points xi = jAx, j = 0, ? 1, . . ., of the initial line. By approx- 
imating the integral in (7) by a trapezoidal rule we have obtained results accurate 
to within an error of order O(Ax2). 
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